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Abstract. A real-space method has been introduced to study the pairing problem within the generalized
Hubbard Hamiltonian. This method includes the bond-charge interaction term as an extension of the
previously proposed mapping method [1] for the Hubbard model. The generalization of the method is
based on mapping the correlated many-body problem onto an equivalent site- and bond-impurity tight-
binding one in a higher dimensional space, where the problem can be solved exactly. In a one-dimensional
lattice, we analyzed the three particle correlation by calculating the binding energy at the ground state,
using different values of the bond-charge, the on-site (U) and the nearest-neighbor (V ) interactions. A
pairing asymmetry is found between electrons and holes for the generalized hopping amplitude, where the
hole pairing is not always easier than the electron case. For some special values of the hopping parameters
and for all kinds of interactions in the Hubbard Hamiltonian, an analytical solution is obtained.

PACS. 71.10.Fd Lattice fermion models (Hubbard model, etc.) – 71.10.Pm Fermions in reduced dimensions
(anyons, composite fermions, Luttinger liquid, etc.) – 71.10.Li Excited states and pairing interactions
in model systems

1 Introduction

Investigations of high-Tc superconductors suggest that
electronic correlation may play a significant role in the
formation of pairs [2]. Although the main interest is on
the physics of two-dimensional highly correlated electron
systems, the one-dimensional models related to high tem-
perature superconductivity are very popular due to the
conjecture [3] that properties of the one-dimensional (1D)
and two-dimensional (2D) variants of certain models have
common aspects. Within the models for correlated elec-
tron systems, that attempt to capture the essential physics
of high-temperature superconductors and parent com-
pounds, the simple Hubbard model [4,5] is the crudest
approximation to include electronic interaction between
band-electrons, by retaining only the on-site interaction
U . This model also assigns the same hopping rate t to
three different hopping processes regardless of the occu-
pation of the two sites involved.

Besides the on-site interaction, other contributions of
the electron-electron interaction are required [6], such as
the nearest-neighbor interactions and the bond-charge in-
teraction term. The Hamiltonian which includes these
interactions is often called the generalized Hubbard
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Hamiltonian (GHH). It has been studied previously by
several authors [7–12] and can be written as

H =
∑
〈i,j〉,σ

tσi,jc
+
i,σcj,σ + U

∑
i

ni,↑ni,↓ +
V

2

∑
〈i,j〉

ninj , (1)

where 〈i, j〉 denotes nearest-neighbor sites, c+i,σ (ci,σ) is
the creation (annihilation) operator with spin σ =↓ or ↑
at site i, and ni = ni,↑ + ni,↓ where ni,σ = c+i,σci,σ.
It is worth mentioning that in principle, the parameters
U and V are positive because they are direct Coulomb
integrals. However, U and V could be negative if attrac-
tive indirect interaction through phonons or other bosonic
excitations are included and are stronger than the direct
Coulomb repulsion. In equation (1), the generalized hop-
ping amplitude, tσi,j , depends on the site occupation and
is given by

tσi,j = tA(1− ni,−σ)(1− nj,−σ) + tBni,−σnj,−σ

+ tAB[nj,−σ(1− ni,−σ) + ni,−σ(1− nj,−σ)]. (2)

The three parameters tA, tB, and tAB are the hopping am-
plitudes from a singly occupied to an empty site, from a
doubly occupied to a singly occupied site and from a dou-
bly occupied to an empty site, respectively. The special
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case tA = tB = tAB = t corresponds to the t − U − V
extended Hubbard model, which has been studied inten-
sively by analytical and numerical methods [4,5]. Equa-
tion (2) can also be written as

tσi,j = tA + (tAB − tA)(ni,−σ + nj,−σ)

+ (tA + tB − 2tAB)ni,−σnj,−σ, (3)

to emphasize the contribution from two- and four-fermion
operators. These new interactions may give rise to new
dynamical effects, absent in the simple Hubbard model.

When a particle-hole transformation [13] is made in
the GHH, electron operators are mapped into hole’s via
c+i,σ → hi,σ, the Hamiltonian of equation (1) becomes:

H = (U + 2zV )
(
N −

∑
i,σ

nhi,σ

)
−
∑
〈i,j〉,σ

tσ,hi,j h
+
j,σhi,σ

+ U
∑
i

nhi,↑n
h
i,↓ +

V

2

∑
〈i,j〉

nhi n
h
j , (4)

where N is the total number of sites, z is the lattice coor-
dination number, h+

i,σ(hi,σ) is the hole creation (annihila-
tion) operator and nhi = nhi,↑ + nhi,↓ with nhi,σ = h+

i,σhi,σ.
The first term in equation (4) only contributes to a shift in
the total energy and the second term belongs to the gen-
eralized hopping parameter for holes, tσ,hi,j . The expression
for tσ,hi,j is given as follows:

tσ,hi,j = tB(1− nhi,−σ)(1− nhj,−σ) + tAn
h
i,−σn

h
j,−σ

+ tAB[nhj,−σ(1− nhi,−σ) + nhi,−σ(1− nhj,−σ)], (5)

where the main difference with the electron hopping is
the change of tA by tB, and so holes also interact via a
Hubbard model. However, there are two crucial differences
between the electron and the hole cases: the density of
holes is 1− n in terms of the electron density (n) and the
signs of the hopping parameter are opposite.

For tA + tB − 2tAB = 0, the generalized hopping am-
plitude is reduced to the Hirsch and Marsiglio model [14],
proposed as a possible mechanism for superconductivity.
An occupation dependent hopping term of the form (2)
arises quite naturally as the result of a trace over ad-
ditional electronic degrees of freedom when mapping
a multi-band Hubbard Hamiltonian onto a single-band
one [15]. Recently, Hirsch [16] discussed the inapplicabil-
ity of the Hubbard model for the description of strongly
correlated electrons and proposed instead the generalized
form (2), based on first principle calculations of the mag-
nitude of the hopping parameters [17]. There is, however,
no consensus on their amplitude in real systems [18]. So,
in order to keep the model as general as possible, we will
not put constraints on the values of the hopping term.

The electronic correlation for the low density limit,
mainly the two particle case, has been intensively stud-
ied by analytical and numerical methods using the
Hubbard model [1,4,19], including different kinds of dis-
order in this model [20–22] and also including the bond-
charge interaction [23–26]. The next question which arises

is how the behavior of the physical properties (e.g. the
binding energy), is modified by the presence of a third
electron. This kind of question is presumed helpful in
the ultimate understanding of the N -body problem. The
case of three correlated particles is not as widely stud-
ied as the two particle case. It was considered earlier by
Mattis [27] in his study of the pair stability for the
attractive-U Hubbard model and by Fabrizio et al. [28]
for the repulsive-U case, who discussed an asymptotic
behavior of the ground state.

For the two-particle case the term (tA + tB −
2tAB)ni,−σnj,−σ is ineffective. In this case, assuming that
tA > tAB > tB, the hopping reduces to

tσi,j = tA−(tA − tAB)(ni,−σ + nj,−σ) (6)

and

tσ,hi,j = tB+(tAB − tB)(nhi,−σ + nhj,−σ) (7)

implying that the hopping of a hole increases in the pres-
ence of another hole and can lead to pairing of holes but
not of electrons [17]. The term (tA + tB−2tAB)ni,−σnj,−σ
now becomes effective for the three-particle problem and
may modify the above statement as we show in the paper.
In this paper, we analyzed the pairing of three electrons in
a one-dimensional lattice using the generalized Hubbard
Hamiltonian. The analysis has been done by extending
the previously reported [1,29,30] mapping method in or-
der to include the generalized hopping, tσi,j . The paper is
organized as follows: In Section 2 we introduce briefly the
mapping method for the generalized Hubbard model and
apply it to the problem of three electrons in a linear chain.
In Section 3, analytical solutions for some special values of
the Hubbard parameters as well as the numerical results
are discussed. Finally, we conclude in Section 4.

2 Mapping method

In this section, we introduce an extension of the map-
ping method explained in detail in reference [1] for differ-
ent lattice topologies. In order to present a brief expla-
nation of the mapping method, let us consider the case
of two electrons with opposite spins in an N -site chain;
the number of two-electron states for this system is given
by N2. These states have a geometric representation in
a square lattice, which can be described by a one-body
tight-binding Hamiltonian, with (3N − 2) ordered site-
impurities. Among these impurities, N are localized on
sites along the principal diagonal of the square lattice with
a self-energy U and the others, 2(N − 1), are localized on
the two next-diagonals with a self-energy V . A simple way
to obtain the solution is to take advantage of the trans-
lational symmetry of the site-impurities and projecting
the two-dimensional lattice of states onto a linear chain of
effective states, similar to the procedure introduced by
Falicov and Yndurain [31]. In general, this method
will map the original many-body problem onto a tight-
binding one with some ordered site-impurities in an nd-
dimensional lattice, n being the number of electrons and
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d the dimensionality of the original system. In this hyper-
space lattice, the on-site (U) and the nearest-neighbor (V )
interactions from the original Hubbard Hamiltonian be-
come the self-energies of the site-impurities. The new ef-
fective Hamiltonian determines the density of states for
the interacting n-particle system.

When the bond-charge interaction is included, the
mapping method showed above should be modified. Let
us see how this modification takes place for the problem
of three electrons, two with up-spin and one with down-
spin in an infinite linear chain. In this case, the network
of three-electron states belongs to a three-dimensional lat-
tice with site- and bond-impurities. For illustration of the
mapping method, let us consider below the configuration
of states for three electrons in a 4-site chain. It is worth
mentioning that both the numerical and analytical calcu-
lations will be done in an infinite chain. For our example,
the different states are:

|1〉 = | ±+00〉, |2〉 = | ± 0 + 0〉, |3〉 = | ± 00+〉,
|4〉 = | −+ + 0〉, |5〉 = | −+0+〉, |6〉 = | − 0 + +〉,
|7〉 = |+±00〉, |8〉 = |+−+ 0〉, |9〉 = |+−0+〉,
|10〉 = |0±+0〉, |11〉 = |0± 0+〉, |12〉 = |0−++〉,
|13〉 = |+ +− 0〉, |14〉 = |+ 0± 0〉, |15〉 = |+ 0−+〉,
|16〉 = |0 +±0〉, |17〉 = |0 +−+〉, |18〉 = |00±+〉,
|19〉 = |+ +0−〉, |20〉 = |+ 0 +−〉, |21〉 = |+ 00±〉,
|22〉 = |0 + +−〉, |23〉 = |0 + 0±〉, |24〉 = |00 +±〉.

(8)

Electrons with spin up and spin down are denoted by +
and − respectively, a doubly-occupied site is indicated
by ± and 0 represents an empty site. In the generalized
Hubbard Hamiltonian, a state with a site occupied by two
electrons requires an energy U and a state in which two
electrons are situated on nearest-neighbor sites, requires
an energy V . States with a site occupied by two electrons
and an electron situated on a nearest-neighbor site re-
quires an energy U + 2V , the remaining states with elec-
trons placed at distant sites do not require any energy
(see Eq. (8)). Finally, the amplitudes of the transition
probability between nearest-neighbor states will depend
on the site occupation and are given by tA, tB and tAB. In
Figure 1, we show a three-dimensional geometric represen-
tation of our previous 24 states, where the circles represent
the states with their self-energy indicated inside and the
number levels of the states are as given in equation (8).
As already mentioned, the hopping between these states
depends on the site occupation but it is important to re-
mark that the difference of two connected states is only
the hopping of one electron. For instance in Figure 1, the
hopping amplitude from state 1 (|1〉) to state 2 (|2〉) is tA,
the hopping amplitude from state 2 (|2〉) to state 4 (|4〉) is
tAB and the hopping amplitude from state 1 (|1〉) to state
7 (|7〉) is given by tB, etc. Therefore, the network of states
in Figure 1 can be described by a site- and bond-impurities
tight-binding Hamiltonian.

For the case of three electrons in an infinite periodic
chain, the network of states corresponds to an infinite

Fig. 1. Geometrical representation of the three-electron states
for a chain of four sites. The states are represented by circles
with self-energy indicated inside, and the numeration of states
is according to equation (8). Details of the hopping parameters
and the symmetry of the lattice are discussed in the text.

three-dimensional lattice with an infinite number of site-
and bond-impurities ordered along the principal diagonals
of each cube in the lattice. The network of states has an ex-
act solution, since the Hamiltonian is a tight-binding type.
A simple way to obtain the solution is to take advantage
of the translational symmetry of the impurities and to
project the network of states onto a two-dimensional tri-
angular lattice of effective states, as it is shown in Figure 2.
This figure represents the projection of states for an origi-
nal system with three electrons in a five-site chain, where
the effective projected hopping parameters β+

A , β
−
A , β

+
B ,

β−B , β
+
AB, and β−AB are given by

β+
A = tAeiKa/

√
3, β−A = tAe−iKa/

√
3,

β+
B = tBeiKa/

√
3, β−B = tBe−iKa/

√
3, (9)

β+
AB = tABeiKa/

√
3, β−AB = tABe−iKa/

√
3.

Here, K is the wave vector in the projection direction
and a = 1 is the lattice parameter. The effective hopping
parameters satisfy the following relation β+ = (β−)∗. Fi-
nally, the two-dimensional results must be integrated with
respect to K within the first Brillouin zone.

3 Results and discussion

3.1 Analytical solutions

In this subsection we will study the analytical solution for
some particular cases of the ground state for three elec-
trons (K=0) in a linear chain, therefore using equation (9)
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Fig. 2. Lattice of effective states for three electrons in a linear chain. The effective states are represented by ellipses and
the self-energy for each of them is indicated inside. There are six different effective-hopping parameters β+

A , β
−
A , β

+
B , β

−
B , β

+
AB,

and β−AB, with values given in the text. The full-line and dash-line represent the non-parallel (↑↓↑) and parallel (↑↑↑) cases
respectively. The double lines show a linear chain of effective states with two nearest-neighbor site impurities (2V ) and the
dotted lines represent the single bond-impurity.

we have: β+
A = β−A = tA, β+

B = β−B = tB and β+
AB =

β−AB = tAB. The analytical solutions were obtained us-
ing these new values for the effective hopping parameters
and analyzing the network of states given in Figure 2,
where we observed two important limits; the first limit is
when the hopping amplitude from a doubly occupied to
an empty site is forbidden tAB = 0 but the hopping am-
plitudes tA 6= 0 and tB 6= 0, and the second limit is when
both tAB = 0 and tB = 0 are forbidden but tA 6= 0.

Let us analyze the first case (tAB = 0, tA 6= 0 and tB 6=
0), it shows that there is a competition between the linear
chain of effective states with two site-impurities (shown in
Fig. 2 by double lines) and the triangular lattice of effec-
tive states (shown in Fig. 2 by dashed lines). The latter
one is in fact the network of effective states associated to
the problem of three electrons with parallel spin (↑↑↑) in
a linear chain for the Hubbard model [32]. It is impor-
tant to mention that for the special case tA = tB = t, the
linear chain of effective states (having two equal nearest-
neighbor site-impurities with self-energy 2V ), has an an-
alytical solution for the ground state energy. In order to
obtain the solution, let us consider the problem of two sub-
stitutional impurities introduced at two nearest-neighbor
sites in a periodic linear chain described by a tight-binding
Hamiltonian. The solution for the ground-state energy can
be found using the Green’s function technique. In the lin-
ear chain, the Green’s function for two impurities is given
by [33]

G(n, l;E) = 〈n|G0p|l〉+
ε2〈n|G0p|m〉〈m|G0p|l〉
1− ε2G0p(m,m;E)

, (10)

where ε2 is the site energy of the second impurity at site
m and G0p is the Green’s function for a single impurity
with site energy ε1. For a linear chain with one impurity

localized at the central site (p = 0), the Green’s function
G0p evaluated at the energy of the second impurity (m =
1) is given by

G0p(1, 1;Eimp) =
D2 + 2ε1

√
E2

imp −D2 − 2ε1Eimp

D2(
√
E2

imp −D2 − ε1)
,

(11)

where D = |ztA| is equal to half the bandwidth within the
independent particle approximation and z is the number
of nearest-neighbors. In the present case of two impurities,
the poles of G(n, l;E) in equation (10) are given by

G0p(m,m;Eimp) =
1
ε2
· (12)

When the second impurity is localized on site 1 (m = 1),
we obtain

G0p(1, 1;Eimp)=
1
ε2

=
D2+ 2ε1

√
E2

imp−D2− 2ε1Eimp

D2(
√
E2

imp −D2 − ε1)
·

(13)

Therefore, the ground state energy is given by

Eimp =
−2ε1ε2(ε1 + ε2)±(2ε1ε2 −D2)

√
(ε1−ε2)2+D2

D2 − 4ε1ε2
·

(14)

Finally, for the special case ε1 = ε2 = 2V , the solution is
given as follows:

Eimp =
1

D2 − 16V 2

[
−32V 3 ±D(8V 2 −D2)

]
. (15)
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In equation (15), Eimp gives the energies of the two lo-
calized states for the two equal site-impurities. Since the
linear chain is a bipartite lattice and the hopping between
two nearest-neighbor sites is the same all along the chain,
there is a symmetry of these localized states. This means
for repulsive potentials (V > 0) the states are opposite
to those for attractive potentials (V < 0). The binding
energy is given by ∆ ≡ max(|Eimp|)−D.

For the second limit (tAB = 0, tB = 0 and tA 6= 0),
the competition (see Fig. 2) is between the semi-infinite
linear chain of effective states with a site-impurity of
self-energy 2V located at the surface and the triangular
lattice of effective states. The semi-infinite linear chain
with a surface site-impurity has an analytical solution [34]
given by:

Eimp = 2V +
t2A
2V
· (16)

Such a solution is only valid for |2V | > |tA| which leads to
|Eimp| > 2|tA|, so that this solution corresponds to a lo-
calized state lying outside the band. For V > 0 (repulsive
potentials) the state is above the band, the reverse being
true for attractive potentials (V < 0).

3.2 Numerical solutions

Here we will present the numerical solution, for variations
of the hopping parameters and of the interaction terms,
for the case of three non-parallel (↑↓↑) electrons and for
the case of three non-parallel (↑↓↑) holes in an infinite one-
dimensional lattice, within a generalized Hubbard model.

In order to analyze the pairing state we look at the
binding energy (∆) for both cases of electrons and holes.
The binding energy has been calculated from the energy
difference between the lowest correlated state and the
lowest non-correlated state localized at the lower non-
interacting (U = V = 0 and tA = tB = tAB = t)
three-particle band edge. The lowest correlated state en-
ergy is obtained for K = 0 in the case of electrons and
for K/

√
3 = π for the hole case, which corresponds to

eliminating the change of sign of the effective hopping pa-
rameters similar to a gauge transformation in a bipar-
tite lattice. As we already mentioned, the essential differ-
ence between holes and electrons within the generalized
Hubbard Hamiltonian is that the hopping amplitude tA
for electrons should be changed to tB for holes. Results for
holes are simply obtained from electrons by interchanging
tA and tB. This produces an asymmetry between electron-
and hole-pairing. The final numerical diagonalization was
carried out for a truncated two-dimensional triangular lat-
tice of 551 effective states. The matrix sizes for numerical
diagonalizations were chosen as the minimum size so that
the physical quantities do not vary significantly with the
matrix size.

In Figure 3, we show the ground-state phase diagram
for both electron-singlet and hole-singlet in a linear chain
for the Hubbard model tA = tB = tAB = t. In this figure,
we can notice the electron-hole symmetry and the absence

Fig. 3. Singlet-pairing phase diagram for both cases of three-
electrons or three-holes in an infinite linear chain within the
extended Hubbard Hamiltonian, it means, when tA = tB =
tAB = t.

Fig. 4. Numerical results of the binding energy for three
electrons or three holes with antiparallel spin in a linear chain
as a function of the tAB parameter and without on-site and
nearest-neighbor interaction.

of pairing for U and V positives which is very well
established.

In Figure 4, we present the numerical calculations
of the electron-binding energy for tA = tB = −1 and
|tAB| > |tA|, |tB|. The calculations have been done when
the hopping tAB from a doubly occupied site to an empty
site (or, hopping from a single occupied site to a single
occupied site) has higher probability, this favoring pair-
ing. Here, we put U = V = 0 in order to observe only
the effects of the bond-charge interaction term on ∆. In
this figure the electron-hole symmetry is preserved since
tA = tB and the tAB term in equation (5) did not change
after the transformation.

The effect of tA and tB on the binding energy is shown
in Figure 5 (for tB = tAB = −1) and in Figure 6 (for tA =
tAB = −1) respectively. From Figure 5, it is clear that in-
creasing tA favors pairing of electrons although tA > tAB,
in contrast with the two-particle case. This shows the
strong effect of the additional term (tA − tAB)ni,−σnj,−σ.
The effect of tB is much weaker as compared to tA, since
the number of possibilities of hopping from a doubly oc-
cupied site to a singly occupied one is much smaller than
hopping from a singly occupied site to an empty one.
Therefore pairing electrons requires larger values of tB.
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Fig. 5. Binding energy for the case of three electrons in a
chain as a function of the tA parameter and with U = V = 0.

Fig. 6. Singlet-binding energy of three electrons in a linear
chain versus the tB parameter, and without on-site and nearest-
neighbor interaction.

In fact, the effect of the parameter tB results from a sin-
gle band-impurity in the tight-binding Hamiltonian (see
dotted line in Fig. 2), while tA provides a large number of
band-impurities as can be seen in Figure 2.

As already mentioned the results for holes are sim-
ply obtained from electrons by interchanging tA and tB.
For example, the behavior of the hole-binding energy as a
function of the tB parameter is the same as that given in
Figure 5 for electrons and the corresponding results for the
tA parameter are those of Figure 6. Thus, from Figures 5
and 6 we can observe clearly the electron- and hole-pairing
asymmetry, where pairing holes is not always easier than
pairing electrons.

Let us now consider the behavior of ∆ as a function of
U (Fig. 7a) and as a function of V (Fig. 7b) for electrons,
with two different values of the tAB parameter and with
tA = tB = −1. Here, the nearest-neighbor interaction has
the values V = 0 and V = 1.0|t| in Figure 7a, and the
on-site interaction has the values U = 0 and U = 1.0|t|
in Figure 7b. Both U and V reduces the pairing, but as
a result of the increased tAB, we can obtain a binding
energy even when both interactions are positive. U and
V tend to reduce pairing in doubly occupied sites and
nearest-neighbor single occupied sites, thus weakening the
role of the tAB hopping processes. However, in the case
considered (tAB > tA, tB), V appears to be more efficient
than U in breaking electrons or hole paring. The results

Fig. 7. In (a), the binding energy is shown for electrons or
holes as a function of the repulsive on-site interaction U for two
values of the repulsive nearest-neighbor interaction, V = 0 and
V = 1.0|t|, and also for two values of the tAB hopping param-
eter tAB = 1.5|t| and tAB = 2.0|t|. In (b) we show the binding
energy as a function of V for the same hopping parameters but
for two on-site interaction, U = 0 and U = 1.0|t|.

correspond to a phase diagram similar to Figure 3, but
with the boundary between pairing and non-pairing region
eventually pushed toward positive U and V .

In Figures 8a, b, we show the electron-binding energy
as a function of U and V respectively for two different
values of tA and with tAB = tB = −1. In order to see the
behavior of the hole-binding energy for the tA parameter
we should take Figures 9a, b but changing tB by tA. From
all these figures, we can observe clearly the electron-hole
asymmetry and also that the pairing strength between
electrons is stronger than for the hole case. The latter
happens because the large number of tA bond-impurities
for the electron case dominates over the single tA bond-
impurity for the hole case. We can also see the hyperbolic
behavior of ∆ for the electron case, which show us the
strong dependence on the correlated hopping.

In Figures 9a, b, we show the evolution of the electron-
binding energy as a function of the on-site and the nearest-
neighbor interaction respectively, using two values of the
parameter tB and with tA = tAB = −1. The behavior of
the hole-binding energy is the same as in Figure 8 but
changing tA by tB. From all these figures we can see that
the pairing strength between holes is stronger than in the
electron case. The reason is similar to that given in the
previous paragraph, for the electron case the effect
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Fig. 8. In this figure, the electron binding energy is shown
for two different values of the tA parameter as a function of
the repulsive on-site interaction U (a) and as a function of the
repulsive nearest-neighbor interaction V (b). This figure also
gives the behavior of the hole binding energy but for the case
of two different values of the tB parameter, it means, we should
simply change tA by tB.

on the binding energy results from only one bond-impurity
(see dotted line in Fig. 2) while for the hole case we have
a large number of tB bond-impurities.

4 Conclusions

We have studied the electronic correlation within the
generalized Hubbard model, by extending the previously
introduced real-space mapping method to include the
bond-charge interaction term. The original correlated
many-body problem has been mapped onto an equivalent
site- and bond-impurity tight-binding one in a higher di-
mensional space, where the problem was solved exactly.
The bond-charge interaction appears as bond-impurities
and the on-site and nearest-neighbor interactions as site-
impurities in the network of states. This study has been
carried out for a system with three-correlated electrons
in an infinite one-dimensional lattice, where an analyti-
cal solution has been obtained for some special values of
the hopping parameters and all kind of interactions. A
clear pairing asymmetry between electrons and holes is
observed. It is found that the effects of a strong competi-
tion between the bond-charge interaction and the on-site
and nearest-neighbor interaction in the three-body prob-
lems are definitely relevant for the behavior of the bind-
ing energy, in particular we established that the pairing

Fig. 9. Here, the electron binding energy is shown for two
different values of the tB parameter as a function of the repul-
sive on-site interaction U (a) and as a function of the repulsive
nearest-neighbor interaction V (b). This figure also gives the
behavior of the hole binding energy but for the case of the tA
parameter, it means, we should simply change tB by tA.

strength for holes or for electrons depends strongly on the
parameters of the bond-charge interactions.
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